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The concept of contingency lies at
the heart of behavioral analysis. Con-
tingency is the fundamental explana-
tory mechanism linking behaviors, an-
tecedents, and consequences into a dy-
namic continuum that constitutes an
organism’s history. Fundamental, of
course, does not mean all encompass-
ing. We know that any given contin-
gency can or will interact with many
other variables, including phylogenet-
ic, ontogenetic, motivational, physio-
logical, contextual, and historical vari-
ables. Nevertheless, for basic and ap-
plied behavior analysts, the key ques-
tion in understanding or modifying
behavior is ‘“What are the contingen-
cies?”

Despite the central role of contin-
gencies in behavior analysis, our un-
derstanding of how they work remains
surprisingly vague. Beginning with
Skinner’s The Behavior of Organisms
(1938) and the subsequent heroic effort
reflected in Ferster and Skinner’s
Schedules of Reinforcement (1957),
and continuing through the 1960s and
1970s, which was the golden age of
schedule analysis, we became increas-
ingly aware of the complexity of the
task. Schedules, especially the classical
ones like fixed-ratio and variable-inter-
val schedules, were easy to describe
but difficult to understand. There have
been a number of strategies to deal
with this state of affairs. One has been
simply to throw up one’s hands in de-
spair and treat the term contingency in
the most generic, and thus useless,
way. The most radical expression of
this approach is to dismiss contingen-
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cies altogether as mere contrivances. A
second approach has been to deal only
with the simplest kinds of arrange-
ments. This characterizes at least some
of both basic and applied behavior
analyses, though by no means all.
Without question, this pragmatic ap-
proach has often paid off with power-
ful methods of behavioral control.
Ferster and Skinner (1957), in their
treatment of contingencies, placed par-
ticular emphasis on events at the mo-
ment of reinforcement. This led direct-
ly to a third approach, what is called a
molecular analysis of contingencies.
Here the selective effects of reinforce-
ment or punishment on momentary
features of behavior, such as interre-
sponse times, have been explored. In
contrast, a fourth, and very productive,
approach has been to emphasize and
explore molar aspects of contingency-
controlled behavior. Analysis of
choice, behavioral economics, behav-
ioral ecology, behavioral momentum,
and molar feedback functions have
been some of the contributions of this
perspective.

The molecular versus molar ap-
proach has stimulated a controversial
and productive theoretical and empiri-
cal research effort in behavioral anal-
ysis (see, e.g., Baum, 1989; Donahoe
& Palmer, 1994; Marr, 1992). The is-
sue of scale in how contingencies con-
trol behavior is also inherent in the
present papers by Bower and Watson
that treat contingencies in yet other
ways that are distinct from traditional
behavioral analysis.

Watson asks how organisms might
detect relations between behavior and
consequent events and suggests a hi-
erarchy from contiguity to correlation
to conditional probability to causal or
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logical implication. He argues that
conditional probability analysis pro-
vides perhaps the most reasonable
mechanism for contingency detection,
because it involves two independent
but essential measures of response—
consequence relations: p(S® | R,) and
P(S® | ~Ry); that is, the probability of
a reinforcer (S®) given that some mem-
ber of a particular operant class (R,)
has occurred and the probability of the
reinforcer occurring in the absence of
a member of that class (~R;). (I am,
of course, doing a bit of translating of
Watson into behavior analysis termi-
nology.) Bower, in his paper, argues for
some kind of logical implication
probed by hypothesis testing.

Contiguity Is Still King, But It Needs
Help

Watson rightly points out the histor-
ical primacy of contiguity in establish-
ing relations between events, but goes
on to support conditional probability as
foundational. The conditional probabil-
ity approach to conditioning can be
traced to Rescorla’s (1967) analysis of
the proper control arrangements for
Pavlovian conditioning. He concluded
that an essential control was what he
deemed truly random, that is, the re-
lation between the conditional stimulus
(CS) and the unconditional stimulus
(UCS) would be unpredictable. This
can be expressed as

p(UCS | CS) = p(UCS | ~CS).

These two values (or, more precisely,
the difference in the values, see below)
may be used to define various other
procedures for classical conditioning
such as the following:

p(UCS | CS) = 1; p(UCS | ~CS) = 0
(continuous reinforcement).

0 < p(UCS | CS) < 1; p(UCS | ~CS)
= 0 (partial reinforcement).

p(UCS | CS) < p(UCS | ~CS) (inhib-
itory CS).

Actual measures of the relationship be-
tween the CS and the UCS in any giv-
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en experiment may be determined from
a contingency table by directly calcu-
lating the conditional probabilities or
by use of a measure of correlation such
as the phi coefficient.

The Rescorla-Wagner model (e.g.,
1972) of Pavlovian conditioning views
the conditioning arrangement as in-
volving not simply a potential CS in
isolation but within a context (CTX)
comprised of everything that is not the
CS. Thus, a necessary (but clearly not
sufficient) condition for a stimulus to
become a CS would be

p(UCS | CS + CTX) > p(US | CTX).

Moreover, in Rescorla-Wagner terms,
the associative strength, Vs, cx, that
would accrue to the CS + CTX is sim-
ply the sum of the associative strengths
of each: Vg + V. If the conditional
probabilities above were equal, then

Ves + Verx = Verx.

Thus V= 0, and no conditioning oc-
curs. This is a pure contiguity theory,
despite Rescorla’s (1988) claim to the
contrary. Pavlovian conditioning from
Rescorla’s own theoretical position is
apparently not what he thought it was
either.

As for response—consequence rela-
tions, the same kind of analysis should
apply, but the possible arrangements
and dynamics are more complex (see
Marr, 1997, for an example of a con-
ditional probability analysis of operant
arrangements; see also Schwartz &
Robbins, 1995). With a three-term con-
tingency an explicit arrangement is set
up among a class of behaviors, a dis-
criminative stimulus, and a reinforcing
consequence. Moreover, as Donahoe
and Palmer (1994) argue, any stimulus
present in the context of a response—
consequence relation may acquire con-
trol over responding. Thus, explicit
discriminative procedures need not be
imposed. At any rate, no matter how
complex these contingencies are, con-
tiguity is king.

The conditional probability ap-
proach is a substantial advance in put-
ting the concept of contiguity (i.e., as-
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sociation) in good order and emphasiz-
es contiguity’s fundamental nature. The
role of contiguity is further emphasized
by Watson’s own approach via a neural
network model, which, regardless of its
analytic complexity, is basically a con-
tiguity machine. That feature is per-
haps the most relevant commonality
that neural network models have with
real nervous systems. All modern the-
ory and research in the physiology of
learning emphasize the role of conver-
gent (i.e., contiguous) influences in
neural systems (e.g., Shepherd, 1994).

I have used the terms association
and contiguity as if they were synon-
ymous; this, of course, is not strictly
true. In addition to Aristotle’s primary
list of the principles of association,
similarity, contrast, and contiguity,
there are, for example, Thomas
Brown’s nine secondary principles
(see, e.g., Mazur, 1998). All of these
principles have inspired major compo-
nents of modern learning theory and
practice. I argue however, that some
notion of temporal contiguity underlies
any coherent notion of association.
Take correlation of events, for exam-
ple. As Rescorla’s conditional proba-
bility analysis shows, p(UCS | CS)
must be greater than zero for condi-
tioning to occur. This is a necessary,
but not sufficient, condition, but what
is really being said here is that the CS
and UCS are, on some trials, tempo-
rally contiguous. Now, here is a prob-
lem: Just as association lacks precise
definition, so does contiguity. A lot of
nonsense was emitted over taste aver-
sion conditioning, for example, be-
cause it was said to have violated the
principle of temporal contiguity. The
principle contains no parameter, and
thus cannot be violated by showing
that the time interval between signifi-
cant events can be greater than or must
be less than a certain value.

As Watson properly emphasizes,
however, contiguity, however defined,
is not enough; there need to be dynam-
ic relations operating in contingencies
that drive changes in behavior. This
concept has been theoretically mani-
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fested in all sorts of ways: differences
from asymptotic associative strength,
expectancy, surprise, behavior discrep-
ancy, Hebb rule, Premack principle, re-
sponse deprivation, behavioral regula-
tion, E rules versus O rules, behavior
dynamics, back propagation, Ap rule,
and so forth. These perspectives are all
capable of analytic treatment to relieve
them of surplus meaning. Watson’s ap-
proach is perhaps closest to the Ap
rule, which, as Spellman (1996) re-
cently put it, ““is often considered the
normative rule for computing causal
strength” (p. 337). In the present con-
text, the rule states that the tendency
for behavior to change upon imposition
of a contingency would be proportional
to the difference in the appropriate
conditional probabilities, for example,

Ap = k[p(S* | Ro) — p(S* | ~Ry)],

where k is a constant of proportional-
ity. This introduces the role of detec-
tion, the particular concern of Watson.

Organisms, through natural selec-
tion, developmental processes, and in-
dividual history, would be more or less
sensitive to this difference and thus
may come under control of a contin-
gency. However, as Watson also em-
phasizes, a Ap rule of this kind is not
dynamic enough. Such a rule contains
no temporal variables that specify the
times between, and sequences of, be-
haviors and consequences. These ini-
tial and boundary conditions are of ob-
vious importance if contiguity is to be
foundational. And, of equal signifi-
cance, how behavior changes over time
(or trials) requires some dynamic equi-
librium or asymptotic condition toward
which behavior moves, as well as a
rule specifying the difference between
present behavior and that asymptote. A
Ap rule can specify an asymptote. Cer-
tainly, if the conditional probabilities
do not change, their difference is con-
stant. The difference-equation rule
Watson leaves to a neural network
model with back propagation.

Though no doubt unintended, Wat-
son, in his emphasis on detection and
computation, falls into a common trap
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of treating these as if they were inde-
pendent behaviors that somehow pre-
cede the behavioral changes driven by
contingencies. We could not indepen-
dently measure such events even if
they were somehow independent. De-
tection only makes sense in terms of
the behavior changes we measure. For
example, the generalized matching law
includes a measure of sensitivity (for
details, see, e.g., Davison & McCarthy,
1988), which specifies how much be-
haviors change with changes in contin-
gencies that provide alternative sources
of reinforcement. One could say that
the larger the sensitivity parameter, the
more the organism ‘“‘detects’’ a change,
but that adds nothing to the account be-
yond, at best, a simple definition.
Computation is even more troubling
because with respect to nature no such
event could be occurring—any-
where—in an infant, a pigeon, Rescor-
la’s dog, the brain, or, indeed, the moon
orbiting the earth. Computation, as ver-
bal behavior, is an act best reserved for
the modeler who is solving difference
or differential equations. To do other-
wise is to confuse the model and its
manipulations with the thing mod-
eled—a kind of attribution error.

But Is It Logical?

Bower is boldly unfazed by these
problems:

It is my contention that human newborns treat
these relationships as possible hypotheses and
act to test the validity of these hypotheses. I
make no apology for this terminology. If Kre-
shevsky . . . could write about hypothesis testing
in rats, I can surely write about hypothesis test-
ing in human infants. (p. 143)

This statement and the general per-
spective of Bower’s paper reflect a
confusion of the biological with the
logical, of knowing how with knowing
that, of behavior in accordance with a
rule and rule following, or, in behavior-
analytic terms, contingency-controlled
versus rule-governed behavior. Bower
ultimately hedges by declaring, “I as-
sume the whole process is more or less
automatic, as automatic as the convey-
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ance and divergence of our eyes in bin-
ocular vision” (p. 143). Logic, even in
its simplest form, is not so automatic,
as a glance at the television or daily
newspaper tells us. Indeed, it took an
Aristotle to begin to put logic in good
order, and a Boole, a Turing, a von
Neumann, and other very clever people
to supply the foundations for modern
logical systems such as those used in
computer operations. Bower’s formu-
lation is but another quantitative model
on the same plane with Watson’s.
Again, on the one hand, there is the
behavior of the modeler; on the other,
there is the behavior of the thing mod-
eled. Nothing is gained (indeed, much
is lost) by confusing the two.

Rational or theoretical considera-
tions aside, the data presented by Bow-
er merit some considerable attention.
One must await further developments
here, but the focus on behavioral
change as opposed to the steady state
is refreshing. Even in the pristine do-
main of the operant conditioning
chamber, the details of mechanisms of
behavior change are just beginning to
be explored in reasonable detail. How-
ever, with respect to both Watson and
Bower, I sensed their lack of contact
with the immense literature in behavior
analysis on contingencies that could
have helped frame their approaches.
The sort of topics that might be rele-
vant range from molar feedback func-
tions, interresponse-time analyses, be-
havioral momentum, choice models,
linear systems models, behavior dy-
namics, effects of response-indepen-
dent versus response-dependent con-
sequences, acquisition of schedule pat-
terning and response units, and acqui-
sition of stimulus and response
differentiation, just to name a few.
Nevertheless, readers of The Behavior
Analyst have much to learn as well in
the work of Bower and Watson. They
are wrestling with behavioral mecha-
nisms that may be foundational to the
more complex ones that many behavior
analysts seem to prefer playing with.
We all share the common goal of un-
derstanding how interactive relations
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between behavior and environment
come to shape behavior. Like Bower’s
and Watson’s subjects, that understand-
ing is in its infancy.
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